
ЭНТОМОЛОГИЧЕСКОЕ ОБОЗРЕНИЕ, 104, 2, 2025

51

УДК 632.935.71

ВЫСОКОЧАСТОТНОЕ ИМПУЛЬСНОЕ ЭЛЕКТРОПИТАНИЕ  
СВЕТОДИОДОВ КАК СПОСОБ УВЕЛИЧИТЬ СБОРЫ  

СВЕТОЛОВУШКАМИ АКТИВНЫХ НОЧЬЮ НАСЕКОМЫХ  
НА ПРИМЕРЕ КАПУСТНОЙ МОЛИ PLUTELLA XYLOSTELLA (L.) 

(LEPIDOPTERA, PLUTELLIDAE)

© 2025 г.  Ю. А. Захарова,* А. А. Мильцын,** А. Н. Фролов***

Всероссийский научно-исследовательский институт защиты растений
шоссе Подбельского, 3, С.‑Петербург–Пушкин, 196608 Россия

*e-mail: julia_fefelova@mail.ru, **e-mail: miltsen@yandex.ru,
***e-mail: entomology@vizr.spb.ru (автор, ответственный за переписку)

Поступила в редакцию 15.04.2025 г. 
После доработки 22.04.2025 г. 

Принята к публикации 22.04.2025 г.

Светоловушки, оснащенные маломощными светодиодными излучателями низкого энер-
гопотребления, благодаря их безопасности для нецелевой энтомофауны весьма перспектив-
ны как средство защиты растений от вредных насекомых. Однако в условиях высоких широт 
уровень естественной освещенности в темное время суток сильно варьирует и аттрактивность 
маломощных светодиодов в начале лета (т. е. в период белых ночей) становится слишком сла-
бой, чтобы обеспечить достаточную эффективность таких ловушек. В этой статье на примере 
капустной моли Plutella xylostella (L.) показана возможность усиления аттрактивного эффекта 
маломощных светодиодов за счет замены их питания постоянным током на питание высокоча-
стотным импульсным (30 кГц). Сборы имаго капустной моли с помощью пластиковых ловушек 
конструкции Дельта, снабженных светодиодными излучателями и синтетическим половым ат-
трактантом в качестве контроля, проводили в окрестностях С.‑Петербурга в 2020–2024 гг. По-
лученные результаты свидетельствуют, что перевод светодиодов на новый тип питания способ-
ствовал существенному росту сборов имаго капустной моли светоловушками — за период белых 
ночей в 4.57 раза, во время следующих за ними темных ночей — в 3.11 раза, а в целом за лето — 
в 4.45 раза. Достигнутые результаты важны не только в прикладном отношении, но имеют цен-
ность и в теоретическом плане, поскольку воздействие мерцающего света на поведение насеко-
мых изучено совершенно недостаточно.
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ВВЕДЕНИЕ

Свет — важнейший экологический фактор для насекомых (Price, 1997), которые в про-
цессе эволюции приобрели крайне эффективные и сложно устроенные органы зрения 
(Briscoe, Chittka, 2001; Warrant, 2017; van Der Kooi et al., 2021; Warrant, Somanathan, 2022).  
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Известно, что поведенческая и  физиологическая активность большинства видов на-
секомых контролируется циркадными ритмами, связанными со  сменой дня и  ночи 
(Saunders, 2002). Циркадные ритмы у разных видов различны, одни виды активны днем, 
а другие — ночью и в сумерки (Niepoth et al., 2018; Brady et al., 2021). Сумеречно-ноч-
ной образ жизни ведет огромное число видов насекомых, включая большинство чешуе-
крылых (Lewis, Taylor, 1965; Kristensen et al., 2007; Powell, 2009). При этом исходно суме-
речно-ночные виды способны проявлять активность и в дневное время, а вот исходно 
дневные виды, за редкими исключениями, ночью не летают (Чернышев, 1996).

Свет оказывает воздействие на  поведение насекомых самыми разными способами; 
одна из наиболее типичных реакций на свет — положительный фототаксис (Jander, 1963; 
Nowinszky, 2003), обычно присущий видам насекомых, активным в темное время суток 
(Мазохин-Поршняков, 1960; Owens, Lewis, 2018). Эта поведенческая реакция с давних 
пор используется для привлечения вредных насекомых к источникам искусственного 
освещения в  целях их мониторинга и  контроля численности (Herms, Ellsworth, 1934; 
Williams, 1948; Szentkirályi, 2002; Shimoda, Honda, 2013; Kim et al., 2019; Rhainds, 2024).

Появление светодиодной техники открыло новые возможности в  сфере конструи-
рования и  применения световых ловушек. Светодиодные излучатели (СДИ) в  срав-
нении с  газоразрядными лампами обладают множеством преимуществ: значительно 
более долгим сроком службы, низким энергопотреблением, более высокой светоотда-
чей, возможностью выбора цветовой температуры, компактностью, слабым нагревом, 
устойчивостью к механическим воздействиям, низкими расходами на техническое об-
служивание (Bourget, 2008; Bessho, Shimizu, 2012; Bugbee, 2017; Bantis et al., 2018). Кро-
ме того, оказалось, что СДИ способны также обеспечивать большие сборы насекомых 
в сравнении с иными источниками светового излучения в ловушках — тепловыми и га-
зоразрядными лампами (Cohnstaedt et al., 2008; Brehm, 2017; Infusino et al., 2017; van Deijk 
et al., 2024). Соответственно, оснащенные СДИ ловушки все шире применяют для борь-
бы с сельскохозяйственными вредителями путем отлова имаго (Shimoda, Honda, 2013; 
Park, Lee, 2017, Kim et al., 2019; Фролов, 2022; Ahirwar et al., 2023). Очевидно, что малые 
размеры и низкое энергопотребление СДИ способствуют удешевлению производства 
и обслуживания ловушек. Более того, маломощные СДИ с низким энергопотреблени-
ем признаны наиболее перспективными источниками света в отношении безопасно-
сти для нецелевой энтомофауны, поскольку снабженные ими малоразмерные ловуш-
ки легко размещаются в местах обитания вредных видов в агроценозах, а их излучение 
распространяется на  весьма короткие расстояния, активно поглощаясь окружающей 
растительностью (Niermann, Brehm, 2022).

Капустная моль Plutella xylostella (L.) (Lepidoptera: Plutellidae) — один из наиболее ши-
роко распространенных (Европа, Азия, Африка, Америка и Австралия) и вредоносных 
для растений сем. Brassicaceae (капусты, рапса, турнепса, редиса, редьки, репы, горчи-
цы и других культур) видов насекомых (Furlong et al., 2013; Fathipour, Mirhosseini, 2017; 
Андреева и др., 2021; Mason, 2022). За последнее десятилетие вредоносность капустной 
моли очень сильно выросла и в России: значительно расширилась география и много-
кратно возросла частота вспышек массового размножения (Андреева, Шаталова, 2017; 
Андреева и др., 2019; Шпанев, 2021, 2023). Несмотря на то, что капустная моль способна 
проявлять летную активность и в дневное время, наиболее активный лёт ее начинает-
ся в  сумерках и  продолжается ночью (Harcourt, 1957; Goodwin, Danthanarayana, 1984; 
Couty et al., 2006; Nowinszky et al., 2008; Wang et al., 2021). В лабораторных условиях было 
показано, что двигательная активность имаго сильно зависит от освещения: она резко 
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и устойчиво подавляется светом и практически сразу активируется темнотой (Tyler et al., 
2025). Кроме того, давно установлено, что спаривание и откладка яиц у капустной моли 
большей частью происходят в первой половине ночи (Pivnick et al., 1990).

Мониторинг с использованием синтетических половых аттрактантов (СПА) — про-
стой, недорогой и достаточно точный способ обнаружения и учета большинства видов 
насекомых-вредителей, но половые феромоны чешуекрылых привлекают, как правило, 
лишь самцов, тогда как вредоносное потомство производится самками (Witzgall et al., 
2010), и порой оказывается, что плотность бабочек капустной моли, отловленных ло-
вушками с  СПА, не  коррелирует с  плотностью вредящих растениям гусениц (Miluch 
et al., 2013). В связи с этим световое излучение, способное привлекать не только сам-
цов, но  и  самок, на  протяжении долгого времени остается действенным способом  
сбора имаго капустной моли (Williams, 1939; Robinson, 1952; Nowinszky, 2003; Shimoda,  
Honda, 2013).

Мониторинг численности капустной моли в окрестностях С.‑Петербурга с помощью 
ловушек с СДИ слабого свечения обнаружил отрицательную зависимость между плот-
ностями гусениц и куколок на растениях капусты и плотностями имаго, привлеченных 
на свет, хотя связь плотности гусениц и куколок с численностью имаго, отловленных 
ловушками с СПА, как и ожидалось, оказалась положительной и высоко достоверной 
(Захарова и др., 2022). Причиной несоответствия стала сильная изменчивость привле-
кательности СДИ слабого свечения для имаго капустной моли: в первой половине лета 
(июнь — начало июля) аттрактивность СДИ существенно уступала таковой СПА, тогда 
как начиная со второй декады июля соотношение отловов в феромонные и светодиод-
ные ловушки сменилось на противоположное (Захарова и др., 2022).

Известно, что световой поток, излучаемый СДИ, строго пропорционален протека-
ющему через него электрическому току (Schubert, 2006; Winder, 2017). Таким образом, 
если при стандартном питании постоянным током СДИ светит непрерывно, то  при 
импульсном питании он будет зажигаться и  гаснуть в  соответствии со  скважностью, 
т. е. коэффициентом заполнения наблюдаемого промежутка времени Т активной со-
ставляющей питающих импульсов (рис.  1). Поэтому импульсный вариант питания  
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Рис. 1. Схема, иллюстрирующая распределение затраченной на свечение энергии 
(закрашенный красным цветом прямоугольник) при питании СДИ за наблюдаемый период 

времени Т током I (А – постоянным, Б — импульсным). 

По: Захарова и др., 2023, с изменениями.
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при одинаковых затратах энергии за определенный промежуток времени Т для обоих 
вариантов питания позволяет перераспределять использование энергии внутри пери-
ода Т и в результате появляется возможность свечения СДИ с большей яркостью, чем 
в случае питания постоянным током, но на меньшее время внутри наблюдаемого про-
межутка времени Т (см. рис. 1) (Захарова и др., 2023).

Поскольку процесс включения и выключения СДИ периодически повторяется, благо-
даря ожидаемому эффекту инерционности зрения, под которым понимается продлен-
ность зрительного ощущения после выключения стимула (Di Lollo, Hogben, 1985, 1987), 
объект облучения может воспринимать излучение при импульсном питании СДИ как 
более яркое, чем при питании постоянным током, хотя затраты энергии в обоих случаях 
одинаковы. Для возникновения указанного эффекта прежде всего необходимо, чтобы 
частота, с которой мерцает свет, превышала критическую частоту слияния мерцаний, 
выше которой мерцающий свет будет восприниматься как непрерывный (Umeton et al., 
2017; Saint et al., 2019). Хотя критическую частоту мерцания света и инерционность зре-
ния наиболее полно изучали у человека (см., например: Landis, 1954; Davis et al., 2015; 
Mankowska et al., 2021), давно установлено, что это явление широко распространено 
во всем животном мире, включая насекомых (Wolf, 1933; Crozier et al., 1937a, b; Agee, 1971;  
Baker, Cosens, 1983; Inger et al., 2014; Barroso et al., 2017; Lafitte et al., 2022). Целью настоя-
щего исследования стала попытка на примере имаго капустной моли достичь усиления 
аттрактивного действия СДИ слабого свечения на насекомых путем применения в ло-
вушках высокочастотного импульсного электропитания СДИ.

МАТЕРИАЛ И МЕТОДИКА

Испытания ловушек проводили в  2020–2024 гг. в  окрестностях С.‑Петербурга 
на опытном поле научно-производственной базы «Пушкинские и Павловские лаборато
рии ВИР» (далее ППЛ ВИР) (59°42ʹ51ʺ N, 30°23ʹ47ʺ E) Всероссийского института гене
тических ресурсов растений им.  Н. И. Вавилова на  территории г. Пушкин. Метеоро-
логические условия в летние месяцы 2020–2024 гг. характеризует рис. 2, выполненный 
по данным, предоставленным метеостанцией ППЛ ВИР. Опытный участок ППЛ ВИР, 
на котором выращивали коллекционный материал культуры капусты, занимал в ука-
занные годы площадь не менее 1500 м2. Здесь рассадным способом (предшественником 
в  разные годы служили посадки овощных культур — кабачка, патиссона, тыквы) вы-
ращивали от 148 до 269 образцов мировой коллекции белокочанной, краснокочанной, 
листовой, брюссельской, цветной капусты и брокколи, представленных зарубежными 
и отечественными сортами и гибридами. Перед высадкой в поле рассаду обрабатывали 
инсектицидным препаратом Актара, ВДГ (тиаметоксам, 250 г/кг) против весенней ка-
пустной мухи Delia radicum (L.) и крестоцветных блошек Phyllotreta spp., в грунт вносили 
навоз и минеральные удобрения. Рассаду капусты высаживали в первой декаде июня, 
ширина междурядий составляла 70 см, расстояние между растениями в рядках — 60 см, 
число растений на делянке — 20. В процессе выращивания проводили все рекомендо-
ванные для возделывания капусты агротехнические мероприятия: прополки, рыхле-
ния, междурядные обработки до смыкания листьев, подкормку аммиачной селитрой.

Для сбора имаго капустной моли использовали ловушки конструкции Дельта, изго-
товленные в соответствии с документацией, описанной в патенте RU195732 U1 (Миль-
цын и др., 2020). Корпус ловушек был выполнен из прозрачного водостойкого пластика, 
в верхней части ловушек помещали съемный электронный блок, содержащий элементы 
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питания (6 аккумуляторов АА 1.2 В емкостью 2200 мА/час каждый), фотодатчик, 2 СДИ, 
закрепленные на одной плате, и блок управления. Внутрь последнего был помещен ми-
кроконтроллер Attiny 25V с записанной программой управления СДИ и подсоединен-
ными к нему фоторезистором и кнопкой программирования.

Электронный блок легко и  просто устанавливался в  ловушке, и  его можно было 
при необходимости без труда заменять (Фролов и  др., 2024). Поскольку имаго ка-
пустной моли наиболее активно привлекает УФ излучение в  диапазоне 365–400 нм 
(Prabaningrum, Moekasan, 2021; Yun et al., 2023; Tarigan et al., 2024), в каждой светоло-
вушке было по  2  СДИ (по  умолчанию использовалось питание постоянным током)  

Рис. 2. Метеорологические условия в летние месяцы 2020–2024 гг. на территории 
научно-производственной базы ППЛ ВИР. 

A — среднемесячные температуры воздуха, °C; Б — суммы осадков за месяц, мм.
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производства компании Oumurui (КНР) с  длиной волны излучения 365–370 нм, ко
торые излучали свет в  противоположных направлениях. Паспортная мощность 
каждого СДИ составляла 3  Вт, ток СДИ — 40 мА, расчетный световой поток в  УФ 
диапазоне — 25–35 лм. Автоматическое включение СДИ в ловушках настраивали на факти-
чески наблюдавшийся уровень освещенности во время захода солнца, а выключение — 
 на освещенность во время восхода солнца, которые ежегодно фиксировали перед нача-
лом проведения испытаний ловушек в начале июня. Электропитанием СДИ управлял 
микроконтроллер Attiny 25V. Программа, загруженная в микроконтроллер, обеспечи-
вала управление включением и выключением СДИ при заданном (перепрограммируе-
мом) уровне освещенности среды, измерение и информирование пользователя о теку-
щем уровне электрического заряда в аккумуляторах, а также отключение аккумуляторов 
в случае их глубокого разряда.

При постоянном стабилизированном напряжении ток через СДИ, как правило, за-
дается токоограничивающим резистором в  целях обеспечения корректного режима 
работы (Graf, Sheets, 1996). Однако при питании от  автономного источника питания 
по мере его разрядки ток через СДИ уменьшается и, соответственно, снижается яркость 
свечения. В этом случае для стабилизации тока через СДИ обычно применяют схему 
питания с активным регулирующим элементом (Портал радиоэлектроники, 2025). По-
скольку и на резисторе, и на регулирующем элементе в виде тепла рассеивается энергия, 
КПД ловушки с СДИ по энергопотреблению обычно не превышает 60 %. Такую схему 
электропитания СДИ в ловушках использовали в 2020 и 2021 гг., но в 2022–2024 гг. ее 
заменили схемой питания высокочастотным импульсным током, описанной в патен-
те RU220753 U1 (Захарова и др., 2023) (рис. 3). При ней питание СДИ обеспечивалось 
с помощью генератора прямоугольных импульсов, реализованного на микроконтрол-
лере Attiny 25V. Регулятором тока через СДИ служил дроссель, представляющий собой 
реактивное сопротивление, благодаря чему нагревания его не  происходило. Средний 
ток СДИ за период составлял 40 мА, КПД использования энергии источника питания 
такой ловушки достигал 98 %. Программа управления, записанная в  микроконтрол-
лер Attiny 25V, в  этом случае предусматривала также возможность установки частоты 
пульсации тока в диапазоне 10–50 кГц. Исходя из соображений минимизации разме-
ров конструкции, возможностей микроконтроллера и времени переходных процессов 
при включении/выключении СДИ (доли микросекунд) по  умолчанию была выбрана 
частота 30 кГц (период колебаний 33 микросекунды). Поскольку продолжительность 
переходных процессов при включении/выключении СДИ на два порядка меньше пери-
ода колебаний питающего СДИ напряжения, при скважности питающего напряжения 
равной 0.5 (половину периода напряжение есть, половину периода нет) излучение СДИ 
будет полностью соотноситься с питающим напряжением.

Считается, что человеческий глаз способен улавливать мерцание света с  частотой 
50–90 Гц (Mankowska et al., 2021), тогда как зрение насекомых может характеризоваться 
чуть ли не на порядок большими значениями критической частоты слияния мерцаний 
(Wolf, 1933; Agee, 1971; Baker, Cosens, 1983; Meyer-Rochow, 2001; Barroso et al., 2017). Уста-
новлено, что в  экспериментальных условиях порой обнаруживается возможность че-
ловеческого глаза различать постоянный и модулированный свет с частотой мерцания 
на порядок большей, чем обычно (вплоть до 500 Гц) (Davis et al., 2015). Поэтому выбран-
ная для питания СДИ частота пульсации тока, а следовательно и мерцания света, рав-
ная 30 кГц, что на 2 порядка превышает максимально зарегистрированное у насекомых 
значение критической частоты слияния мерцаний, равное 400 Гц для жука Melanophila 
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acuminate (DeGeer) (Inger et al., 2014), должна безусловно обеспечивать условие дости-
жения инерционности зрительного эффекта у имаго капустной моли.

В  качестве источника СПА для феромонных ловушек использовали продукт ком-
пании ООО «Феромон» (https://pherotrap.ru/), а именно резиновые диспенсеры, про-
питанные СПА капустной моли (смесь цис‑11-гексадеценаля и  цис‑11-гексадеценил
ацетата в  соотношении 10 : 90, к  которой в  качестве минорного компонента (0.99  % 
от  общего состава) добавлен цис‑11-гексадецен‑1-ол). Для фиксации привлеченных 
насекомых на дно каждой ловушки (с СДИ или СПА) помещали покрытую слоем клея 
картонную пластинку производства этой же компании. Диспенсер с СПА размещали 
по центру клеевой пластинки.

Варианты приманок в ловушках (СДИ и диспенсеры с СПА) тестировали на протя-
жении пяти лет (2020–2024 гг.). Ловушки размещали на  деревянных кольях высотой 
100 см на расстоянии не менее 10 м друг от друга и от края участка, занятого капустой, 
в виде трех рандомизированных блоков, сразу после высадки рассады капусты в грунт, 
как правило, в первой декаде июня. До попадания первых особей капустной моли в ло-
вушки их осматривали ежедневно, последующие учеты проводили два раза в неделю. 
Во время осмотра ловушек имаго капустной моли подсчитывали и удаляли с клеевых 
пластинок, их пол устанавливали по  внешнему строению гениталий (Justus, Mitchell, 

1

3
4

5

2

6
Рис. 3. Электрическая схема электронного блока ловушки с СДИ 

при импульсном электропитании.

1 — светодиоды, 2 — фоторезистор, 3 — аккумуляторная батарея, 4 — микроконтроллер Attiny 25V, 
5 — кнопка программирования освещенности, 6 — дроссель.

По: Захарова и др., 2023, с изменениями.
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1999; Chen et al., 2011). Замену клеевых пластинок проводили по мере их загрязнения, 
а диспенсеры с СПА меняли 1 раз в месяц.

Статистический анализ проводили с использованием программного продукта Tibco 
Statistica 14 для оценки значимости (p ≤ 0.05) различий между данными сборов капуст-
ной моли ловушками согласно непараметрическому критерию Вилкоксона (Wilcoxon 
matched-pairs signed-rank test) (Wilcoxon, 1945). Перед проведением статистического 
анализа сборы имаго капустной моли в ловушки делили на две части, а именно 1) за пе-
риод с начала лёта имаго (первая декада июня) до 9 июля и 2) с 10 июля до завершения 
учетов (первая декада сентября). Хотя официально периодом белых ночей в  С.‑Пе-
тербурге считается промежуток между 11 июня и 2 июля (Galimov, 2020), когда солнце 
в ночное время опускается за линию горизонта не более чем на 7° (Перельман, 2016), 
мы, руководствуясь результатами анализа поведенческих реакций капустной моли (За-
харова и др., 2022), датировали начало и завершение периода белых ночей в окрестно-
стях С.‑Петербурга 3 июня и 9 июля, когда солнце опускалось на 7.7° ниже линии гори-
зонта (Фролов и др., 2024).

РЕЗУЛЬТАТЫ

Результаты сборов имаго капустной моли снабженными СДИ ловушками в сравне-
нии со сборами в ловушки с СПА в 2020 и 2021 гг. (когда электропитание СДИ в ло-
вушках осуществлялось постоянным током) представлены в табл. 1, а за 2022–2024 гг. 
(СДИ в эти годы в ловушках были запитаны высокочастотным импульсным током) — 
в табл. 2.

Подекадную динамику сборов (X ± SE) имаго капустной моли на опытном участке 
за первые два года испытаний (2020 и 2021 гг.) ловушками, снабженными СПА и СДИ 
(электропитание СДИ в  эти годы производилось постоянным током), иллюстрирует 
рис. 4. Подекадная динамика сборов имаго капустной моли на том же опытном участке 

Таблица 1. Сборы имаго капустной моли в  ловушках на  опытном поле капусты ППЛ ВИР 
в 2020 и 2021 гг.

Пол 
бабочек Приманка

2020 г. 2021 г. За оба года

03
.V

I–
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I–
10

.I
X

03
.V

I–
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I–
10

.I
X

03
.V

I–
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I–
10

.I
X

Самцы
СДИ 381 501 882 195 530 725 576 1031 1607

СПА 669 168 837 711 98 809 1380 266 1646

Самки
СДИ 8 12 20 10 94 104 18 106 124

СПА 1 0 1 0 0 0 1 1 2

Оба пола
СДИ 389 a 513 b 902 205 a 624 b 829 594 a 1137 b 1731

СПА 670 b 168 a 838 711 b 98 a 809 1381 b 267 a 1648

Соотношение сборов 
бабочек в ловушках 
с СДИ и СПА

0.58 3.05 1.08 0.29 6.37 1.02 0.43 4.26 1.05

При меч а н ие.  Разными буквенными индексами обозначены достоверно различающиеся 
при p ≤ 0.05 сборы в течение сезона на разные приманки согласно непараметрическому критерию 
Вилкоксона.
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Рис.  4. Подекадная динамика отлова ( X ± SE) имаго капустной моли ловушками, снаб-
женными СДИ питания постоянным током (красные столбцы) и  СПА (зеленые столбцы) 

на опытном поле капусты ППЛ ВИР в 2020 и 2021 гг.

Таблица 2. Сборы имаго капустной моли в  ловушках на  опытном поле капусты ППЛ ВИР 
в 2022–2024 гг.

Пол 
бабочек Приманка

2022 г. 2023 г. 2024 г. Всего за три года

03
.V

I–
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I –
10

.I
X

03
.V

I –
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I –
10

.I
X

03
.V

I –
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I –
10

.I
X

03
.V

I –
09

.V
II

10
.V

II
–

10
.I

X

03
.V

I–
10

.I
X

Самцы
СДИ 161 803 964 185 613 798 792 977 1769 1138 2393 3531

СПА 89 24 113 80 29 109 420 133 553 589 186 775

Самки
СДИ 4 23 27 5 3 8 12 46 58 21 72 93

СПА 0 0 0 1 0 1 0 0 0 1 0 1

Оба 
пола

СДИ 165 b 826 b 991 b 190 b 616 b 806 b 804 b 1023 b 1827 b 1159 b 2465 b 3624 b

СПА 89 a 24 a 113 a 81 a 29 a 110 a 420 a 133 a 553 a 590 a 186 a 776 a

Соотношение 
сборов бабочек 
в ловушках  
с СДИ и СПА

1.85 34.42 8.77 2.35 21.24 7.33 1.91 7.69 3.30 1.96 13.25 4.67

При меч а н ие.  Обозначения как в табл. 1.
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в последующие три года испытаний (2022–2024 гг.) ловушками, которые были снабже-
ны либо СПА, либо СДИ, электропитание которых осуществлялось высокочастотным 
импульсным током, представлена на рис. 5.

Представленные в табл. 1 и 2, а также на рис. 4 и 5 данные убедительно свидетельству-
ют о том, что в период белых ночей, т. е. в первую половину лета (июнь — начало июля) 
в 2020 и 2021 гг. сборы имаго капустной моли ловушками с СДИ, питаемыми постоян-
ным током, существенно уступали таковым, снабженным СПА. Замена в 2022–2024 гг. 
питания СДИ в ловушках с постоянного тока на высокочастотный импульсный при-
вела к тому, что сборы имаго светоловушками существенно выросли. Действительно, 
соотношения сборов имаго капустной моли в ловушки с СДИ и СПА в 2020–2021 гг. 
в белые и следующие за ними темные ночи оценивались в среднем соответственно, как 
0.43 и 4.26, а суммарно — 1.05 (см. табл. 1). В 2022–2024 гг. соотношение отловов в ло-
вушки с СДИ и СПА в белые ночи уже в среднем достигло 1.96, в темные ночи — 13.25, 
а в сумме за лето — 4.67 (см. табл. 2). Таким образом, сборы имаго капустной моли в ло-
вушки с СДИ в 2022–2024 гг. по сравнению с 2020–2021 гг. выросли за период белых 
ночей в 4.57 раза, а во время следующих за ними темных ночей — в 3.11 раза. В итоге пе-
реход с постоянного питания СДИ на высокочастотное импульсное способствовал ро-
сту сборов имаго капустной моли светоловушками за лето в 4.45 раза. Важно отметить,  
что этот эффект наблюдался в  весьма широком диапазоне варьирования метеороло
гических условий (см. рис. 2).

Далее, судя по данным табл. 1 и 2, определенным преимуществом ловушек, снабжен-
ных СДИ, в сравнении с оснащенными СПА, вне зависимости от характера электропи-
тания СДИ, было привлечение на свет помимо самцов также самок, пусть и в неболь-
шом количестве, тогда как совсем мизерную долю самок, попавших в ловушки с СПА, 
следует, очевидно, считать результатом случайного залета. Доля самок в сборах на СДИ 
колебалась по годам и сезонам в пределах от 0.5 до 15 %, в среднем составив за 2020–
2024 гг. 4.15 % (табл.  3). Доля самок в  отловах имаго была максимальной в  2021 г.,  

Таблица 3. Процентная доля самок капустной моли в  ловушках, снабженных СПА и  СДИ 
(по данным таблиц 1 и 2)

Год Сроки сбора
Доля самок в ловушках с разной приманкой, %

СДИ СПА

2020
03.VI–09.VII 2.06 0.15

10.VII–10.IX 2.34 0.00

2021
03.VI–09.VII 4.88 0.00

10.VII–10.IX 15.06 0.00

2022
03.VI–09.VII 2.42 0.00

10.VII–10.IX 2.78 0.00

2023
03.VI–09.VII 2.63 1.23

10.VII–10.IX 0.49 0.00

2024
03.VI–09.VII 1.49 0.00

10.VII–10.IX 4.50 0.00

Всего в 2020–2024 03.VI–10.IX 4.15 b 0.12 a
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Рис. 5. Подекадная динамика отлова ( X  ± SE) имаго капустной моли ловушками, снабжен-
ными СДИ питания высокочастотным импульсным током (красные столбцы) и СПА (зеле-

ные столбцы) на опытном поле капусты ППЛ ВИР в 2022–2024 гг.
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который отличался аномальной жарой при минимумах осадков в  июне и  июле 
(см. рис. 2). Хотя известно, что скорость полета имаго капустной моли возрастает с тем-
пературой воздуха (Shirai, 1991), причины вариации обилия самок в  отловах требуют 
изучения, тем более, что представления об особенностях лёта самок Lepidoptera на свет 
мало изменились за последнее столетие (Turner, 1918).

Полевые исследования подтвердили сделанный ранее вывод (Захарова и др., 2022) 
о  том, что в  сборах насекомых ловушками с  СДИ, так  же, как и  с  СПА, преоблада-
ла капустная моль — целевой объект мониторинга, особенно в период белых ночей. 
Однако после завершения этого периода доля нецелевых видов насекомых в  ловуш-
ках с  СДИ стала превышать их долю в  ловушках с  СПА. Среди нецелевых объектов 
в сборах на свет доминировали представители отрядов Diptera и Lepidoptera, реже — 
Hemiptera (Heteroptera и  Homoptera) и  Coleoptera. Большинство собранных нецеле-
вых видов насекомых составляли вредители капустных (например, капустные мухи 
Delia  spp.) и  других овощных культур, а  полезные насекомые, включая энтомофагов 
и иных представителей отряда Hymenoptera, в ловушки с маломощными СДИ почти 
не попадались (рис. 6, 7).

ОБСУЖДЕНИЕ

Разнообразные по конструкциям ловушки для насекомых находят все более широкое 
применение в мировой практике защиты растений, причем не только для мониторин-
га, но и как средство борьбы с вредителями сельскохозяйственных культур. Это в пол-
ной мере отвечает приоритетности принципа использования наиболее безопасных 
для окружающей среды способов подавления вредных организмов (Dent, Binks, 2020). 
Как правило, ловушки снабжаются средствами или устройствами, обеспечивающими 
управление поведением насекомых путем воздействия на их сенсорные системы (Foster, 
Harris, 1997; Mazzoni, Anfora, 2021), среди которых обычно выделяют аттрактанты хими-
ческой (семиохемики) и физической (семиофизики) природы (Gross, Franco, 2022; Nieri 
et al., 2022). В первом случае речь идет прежде всего о феромонах, а также об алломонах, 
кайромонах и синомонах (Agelopoulos et al., 1999), а во втором чаще всего упоминаются 
световые излучения (Фролов и др., 2021). В практическом отношении как семиохемики, 
так и семиофизики имеют как преимущества, так и недостатки, причем одни и те же 
свойства могут рассматриваться в качестве тех или других в зависимости от целей и ус-
ловий применения (Фролов, 2022). Так, в сравнении с семиохемиками свет в ловушках 
в целом характеризуется гораздо более слабой видовой избирательностью по аттрактив-
ности, что в зависимости от целей сбора насекомых может рассматриваться либо как до-
стоинство (широкий охват привлекаемых объектов для фаунистического анализа и вы-
явления адвентивных видов) (Kammar et al., 2020), либо как недостаток (уничтожение 
нецелевых энтомологических объектов как побочный эффект при подавлении числен-
ности вредных видов) (Фролов, 2022). Далее, хотя ловушки, снабженные маломощны-
ми СДИ низкого энергопотребления, и будут проигрывать более мощным источникам 
света в отношении аттрактивности для насекомых, так как привлекают их лишь на ко-
ротких расстояниях (Truxa, Fiedler, 2012), но именно они способны обеспечить более 
высокий уровень безопасности для нецелевой энтомофауны (Niermann, Brehm, 2022). 
Представленные в данной статье результаты в целом подтверждают такую точку зрения, 
хотя доля нецелевых видов насекомых в отловах ловушками с СДИ была в целом выше, 
чем в  ловушках с  СПА. Этот результат отличается от  данных других исследований.  
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(А) (Б)

(В) (Г)

Рис. 6. Картонные пластинки с клеем, извлеченные из установленных на опытном поле 
капусты ППЛ ВИР ловушек, снабженных СДИ (А, В), питаемыми постоянным током, 

и СПА (Б, Г).

A, Б — сборы в июне и первой декаде июля; В, Г — то же во второй декаде июля — августе.
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Рис. 7. Картонные пластинки с клеем, извлеченные из установленных на опытном поле 
капусты ППЛ ВИР ловушек, снабженных СДИ (А, В), питаемыми высокочастотным

импульсным током, и СПА (Б, Г).

A, Б — сборы в июне и первой декаде июля; В, Г — то же во второй декаде июля — августе.

(А) (Б)

(В) (Г)
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Так, при мониторинге кукурузного мотылька Ostrinia nubilalis (Hbn.) на кукурузе (Груше-
вая и др., 2019) и яблонной плодожорки Cydia pomonella (L.) в садах (Фролов и др., 2024) 
доля нецелевых видов в уловах ловушками с СДИ и СПА была практически одинаковой. 
Вероятно, это отличие связано с тем, что ловушки на поле кукурузы и в саду были окру-
жены густой листвой, поглощавшей УФ излучение, тогда как в  нашем эксперименте 
ловушки располагались над посадками капусты, что позволяло свету беспрепятственно 
распространяться на гораздо большие расстояния. При этом негативный эффект от вы-
лова полезных видов насекомых ловушками с маломощными СДИ в наших опытах все 
равно оказывался минимальным.

Снабженные СПА ловушки для мониторинга капустной моли нашли в  мире самое 
широкое применение, которому посвящена обширная литература (Baker et al., 1982; 
Hallett et al., 1995; Shirai, Nakamura, 1995; Kuwahara et al., 1996; Reddy, Urs, 1996; Reddy, 
Guerrero, 2000, 2001; He et al., 2003; Walker et al., 2003; Wang et al., 2004; Sulifoa, Ebenebe, 
2007; Evenden, Gries, 2010; Nofemela, 2010; Miluch et al., 2013, 2014; Wainwright et al., 2020; 
Zahoor et al., 2023). В России СПА капустной моли также успешно прошли полевые ис-
пытания (Семеренко, Бушнева, 2018; Бобрешова и др., 2020; Черятьева, Ходаков, 2022). 
Помимо мониторинга, ловушки, привлекающие имаго капустной моли с  помощью 
СПА, неоднократно предлагалось использовать в качестве средства борьбы с этим вре-
дителем, в том числе для массового вылова имаго, обеспечивающего создание самцово-
го вакуума (Reddy, Urs, 1997; Wang et al., 2004; Topagi et al., 2018; Syed et al., 2019; Gonzalez 
et al., 2023) или распространение энтомопатогенных микроорганизмов методом авто-
диссеминации (Pell et al., 1993; Furlong et al., 1995; Vickers et al., 2004). Вылов имаго вре-
дителя ловушками, снабженными СПА, можно увеличить добавлением в приманку се-
миохемиков растительного происхождения (Li et al., 2012; Chi et al., 2024).

Хотя оснащенные СДИ ловушки также предлагалось применять в качестве сред-
ства мониторинга и/или подавления численности капустной моли путем массового 
отлова имаго, работ, посвященных реализации этих приемов, опубликовано совсем 
немного (Prabaningrum, Moekasan, 2021; Mason, 2022; Tarigan et al., 2024). Кроме 
того, лишь в единичных статьях сопоставляется аттрактивность для имаго капуст-
ной моли ловушек, оснащенных СДИ и СПА (Suresh et al., 1989; Захарова и др., 2022; 
Tarigan et al., 2024).

Очевидно, что к  серьезным преимуществам ловушек, снабженных СПА, перед ло-
вушками с СДИ, относятся их относительные дешевизна конструкции и простота при-
менения. И если эти преимущества могут стать решающими при выборе ловушек для 
мониторинга, то при выборе ловушек для подавления численности вредителя предпо-
чтение будет определяться уловистостью. Наши материалы свидетельствуют о том, что 
ловушки, снабженные СДИ, способны отлавливать в несколько раз больше особей има-
го вредителя, чем ловушки с СПА, однако такой результат далеко не всегда достигается 
автоматически, поэтому важно обсудить факторы и условия, определяющие изменчи-
вость аттрактантных свойств светоловушек. Опытным путем давно установлено, что 
привлекающее действие света для обладающих положительным фототаксисом насеко-
мых в первую очередь обнаруживает сильную отрицательную связь с уровнем естествен-
ной освещенности (Mikkola, 1972; Bowden, 1982, 1984; Leinonen et al., 1998), в связи с чем 
вариация объемов сбора насекомых световыми ловушками обычно выше, чем у феро-
монных (Фролов и др., 2024).



66

Благодаря вращению Земли вокруг своей оси создается впечатление движения солн-
ца по  небу, и  по  давней традиции в  астрономии принято описывать это явление как 
перемещение светила по воображаемой небесной сфере, в центре которой находится 
наблюдатель (Воронцов-Вельяминов, 1980). Касательную к  поверхности Земли пло-
скость, проходящую через точку наблюдения, именуют плоскостью горизонта, а угол 
между плоскостью горизонта и  направлением на  солнце рассматривают в  качестве 
высоты светила над горизонтом, которая может меняться от –90 до +90° (отрицатель-
ные значения высоты светила соответствуют его положению ниже уровня горизонта) 
(Kondratyev, 1969; Тимофеев, Васильев, 2003). Соответственно, в середине дня на от-
крытом месте и в ясную погоду освещенность в природе достигает 129 × 103 лк, а ночью 
она падает до менее чем 6 × 10–4 лк. Облачность может снизить дневную освещенность 
до нескольких сотен или тысяч люкс, но вечером в пасмурную погоду низкие значения 
освещенности наблюдаются лишь ненамного раньше, чем в ясную. Лунный свет соз-
дает освещенность до 0.32 лк (Hänel et al., 2018). Таким образом, дважды в сутки осве-
щенность земной поверхности изменяется очень сильно, но благодаря рассеянию света 
в атмосфере этот переход совершается не мгновенно, а растягивается на более или ме-
нее длительный период, именуемый сумерками, которые порождают образы и пейзажи, 
издавна вдохновляющие писателей и художников, не дающие покоя романтикам и ин-
тригующие философов и ученых (Davidson, 2015). Различают вечерние (сразу после за-
хода солнца) и утренние (перед восходом солнца) сумерки, а по уровню освещенности, 
т. е. по глубине погружения солнца за линию горизонта — гражданские, навигационные 
и  астрономические. В  качестве нижних границ гражданских сумерек обычно прини-
мают угол погружения центра солнца ниже линии горизонта до 6°, навигационных — 
до 12°, а астрономических — до 18° (Ahrens, Henson, 2019). Хотя природная освещен-
ность в сумерки варьирует в зависимости от самых разных факторов (Розенберг, 1963; 
Roach, Gorden, 1973; Leinert et al., 1998), уровни освещенности при безоблачном небе 
оцениваются в среднем как 3.4 лк при завершении гражданских сумерек и 8.1 × 10–3 лк 
в конце навигационных сумерек (Hänel et al., 2018).

Расчеты свидетельствуют, что в  среднем около четверти своего времени население 
планеты живет в  условиях сумерек, продолжительность которых зависит от  широты 
местности и времени года и может меняться в очень широких пределах, особенно в лет-
ний период. Так, в тропиках, где солнце круче всего опускается к горизонту, продолжи-
тельность сумерек составляет около 10–15 %, а в условиях высоких широт — 30–40 % 
длительности года, причем летом утренние и  вечерние сумерки там могут сливаться, 
образуя так называемые белые ночи, период которых может составлять несколько не-
дель (Розенберг, 1963). Хотя астрономически точного определения понятия белой ночи 
не  существует (Розенберг, 1963), обычно считают, что данный феномен наблюдается 
в  Северном полушарии к  северу от  59.5° с. ш., когда солнце опускается под горизонт 
не более чем на 7° (Перельман, 2016). Явление белых ночей, отраженное в творчестве 
многих писателей и поэтов С.‑Петербурга и привлекающее в этот город туристов со все-
го мира (Lincoln, 2009), официально отмечают ежегодно с 11 июня по 2 июля (Galimov, 
2020). При этом совершенно очевидно, что границы фаз вечерних сумерек выделены 
на основе восприятия окружающего мира людьми: во время гражданских сумерек осве-
щенность сохраняется на весьма высоком уровне, так что в это время даже для чтения 
не требуется подключать дополнительное освещение, которое уже необходимо в фазу 
навигационных сумерек, когда на небе видно немало звезд, позволяющих безошибоч-
но определять местоположение наблюдателя. Далее, при наступлении астрономиче-
ских сумерек, условия освещения уже практически не отличаются от ночных и на не-
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босклоне видны все звезды, только чуть более светлое небо препятствует проведению 
астрономических наблюдений (Розенберг, 1963). Поскольку насекомые воспринимают 
окружающую действительность иначе, чем люди (Глупов, 2013), в качестве дат начала 
и завершения периода белых ночей в окрестностях С.‑Петербурга, основываясь на ана-
лизе поведенческих реакций имаго капустной моли (Захарова и др., 2022), мы исполь-
зовали соответственно 3 июня и 9 июля, когда солнце опускается под линию горизонта 
на глубину до 7.7° (Фролов и др., 2024). Актуальность обсуждаемых вопросов очевидна, 
ведь севернее широты С.‑Петербурга лежит более половины территории России (Глад-
кий, 2011), где, как и на землях соседней Северной Европы, капустная моль может на-
носить весьма серьезный вред капустным культурам (Kanervo, 1936; Coulson et al., 2002; 
Овсянникова и др., 2008; Макаровa и др., 2012).

Как известно, способность глаза у  человека распознавать мерцания света зависит 
от множества факторов, в том числе от частоты и амплитуды модуляции, средней интен-
сивности освещения, длины волны или цвета светодиода, освещенности в окружающей 
среде, расстояния от источника мерцающего света и его размеров, а также от состояния 
организма (Landis, 1954; Brundrett, 1974; Mankowska et al., 2021). Благодаря совершен-
ствованию осветительной техники интерес к психофизике зрения в связи с мерцанием 
света возник довольно давно. Так, еще в XIX в. был сформулирован эксперименталь-
ный закон Тальбота–Плато, гласящий, что воспринимаемая яркость мерцающего света 
определяется относительными периодами света и темноты (Wikipedia, 2024). По сути, 
положения этого закона стали психофизическим обоснованием применения техно-
логии широтно-импульсной модуляции (сокращенно ШИМ), которая используется 
для регулировки яркости свечения дисплеев, в основном относящихся к классу OLED 
(AMOLED и др.). Эта технология основана на подаче контроллером импульсного на-
пряжения на пиксели экрана, что приводит к мерцанию света, которое хотя и превыша-
ет присущую людям критическую частоту слияния мерцаний, способно у некоторой ча-
сти населения вызывать зрительный дискомфорт, головные боли и даже тошноту (Kim, 
2021; Wu et al., 2023; Kurgansky, 2024). Важно отметить, что если в рядовых аппаратах 
обычно применяется частота пульсации напряжения в пределах 200–250 Гц, то наибо-
лее совершенные устройства используют гораздо большие частоты — вплоть до 4320 Гц, 
что обеспечивает людям, чувствительным к мерцанию ШИМ, возможность комфортно 
пользоваться смартфонами с такими экранами (Форум 4PDA, 2025).

Влияние на  насекомых мерцающего света обычно обсуждается в  литературе (Inger 
et al., 2014; Lafitte et al., 2022, 2023) в связи с острой проблемой антропогенного светово-
го загрязнения (Jägerbrand, 2018; Owens et al., 2020; van Grunsven et al., 2020; Boyes et al., 
2021; Жуковская и др., 2022; De Causmaecker et al., 2022, 2023; Lafitte et al., 2022, 2023; 
Longcore, 2023; Linares Arroyo et al., 2024), которое считают одной из важнейших причин 
сокращения численности насекомых на планете (Forister et al., 2019; Wagner et al., 2021; 
Blüthgen et al., 2023, и др.). При этом авторы обзорных работ о воздействии мерцания 
света на насекомых приходят к совершенно справедливому выводу о том, что вопрос из-
учен совершенно недостаточно, и лишь в 2-х статьях приведены данные, характеризую-
щие лёт насекомых на свет (Lafitte et al., 2022, 2023). В одной статье сообщается об умень-
шении сборов ночных насекомых (в  первую очередь представителей отрядов Diptera, 
Hemiptera и Lepidoptera) в ловушки, излучающие мерцающий свет с частотами 120 или 
240 Гц, по сравнению с теми, которые излучали немерцающий свет, причем каких-либо 
признаков положительного изменения в  фототаксисе от  мерцания света обнаружить 
не удалось (Barroso et al., 2017). В другой статье указывается, что благодаря применению 
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технологии ШИМ удалось одновременно достичь экономии электроэнергии и  роста 
аттрактивности световых сигналов СДИ с  частотой 64 Гц для двукрылых насекомых, 
включая комаров Aedes aegypti (L.) и A. albopictus (Skuse) (Liu et al., 2017). В связи с этим 
стоит также упомянуть приведенные в патенте RU220753 U1 данные, которые свидетель-
ствуют о росте в 1.5 раза сборов бабочек сливовой плодожорки Grapholita funebrana Tr.  
ловушками с  питаемыми высокочастотным импульсным током СДИ по  сравнению 
с ловушками, в которых СДИ питались постоянным током. Эти данные были получе-
ны в окр. С.‑Петербурга в период с начала июня по 17 июля 2023 г., т.  е. в основном 
во время белых ночей (Захарова и др., 2023). Представленные в настоящей статье дан-
ные свидетельствуют о том, что при замене в ловушках с СДИ слабого свечения элек-
тропитания постоянным током на импульсный с частотой 30 кГц сборы имаго капуст-
ной моли вне зависимости от метеорологических условий года выросли за период белых 
ночей в среднем в 4.57 раза, во время следующих за ними темных ночей — в 3.11 раза, 
и в общей сложности — в 4.45 раза. Столь высокая частота импульсного питания была 
выбрана, исходя из 1) соображений минимизации размеров конструкции, возможно-
стей микроконтроллера и времени переходных процессов при включении/выключении 
СДИ (доли микросекунд) и 2) сведений литературы, хотя и не очень многочисленных, 
о характере воздействия мерцающего света на поведение и физиологию животных. Так, 
к настоящему времени, в том числе путем снятия электроретинограмм и применения 
поведенческих методов анализа (например, Railton et al., 2009; Lisney et al., 2011, 2012), 
удалось установить, что летающим животным — насекомым и птицам, ориентация ко-
торых в пространстве требует принятия быстрых решений, в целом свойствен весьма 
высокий порог частоты слияния мерцаний (Inger et al., 2014; Boström et al., 2016; Barroso 
et al., 2017; Donner, 2021), существенно превышающий обычные показатели человече-
ского глаза (Mankowska et al., 2021). Поэтому, учитывая выдающиеся способности зре-
ния у ночных насекомых (Warrant, 2017), для безусловного достижения у них инерци-
онности зрительного эффекта была выбрана частота пульсации питающего СДИ тока, 
заведомо (на  2 порядка) превосходящая максимально зарегистрированное значение 
критической частоты слияния мерцаний, равное 400 Гц (Inger et al., 2014).

Таким образом, документированное в  настоящей статье существенное увеличение 
объема сборов капустной моли в ловушки с СДИ высокочастотного импульсного пита-
ния явно не случайно и объясняется проявлением психофизических эффектов слияния 
мерцаний и инерционности зрения, благодаря которым свечение СДИ при высокоча-
стотном импульсном питании выглядит более ярким, чем свечение СДИ, питаемых по-
стоянным током, хотя затраты энергии в обоих случаях совершенно одинаковы. Ины-
ми словами, представленные в статье материалы хорошо согласуются с современными 
представлениями о глубоком функциональном сходстве зрительных систем позвоноч-
ных и насекомых (Sanes, Zipursky, 2010; Clark, Demb, 2016).

Полученные нами результаты и их сопоставление с литературными данными полезны 
прежде всего в качестве свидетельства перспективности использования светоловушек 
с СДИ, питаемых высокочастотным импульсным током. При этом важно подчеркнуть, 
что характер изменения реакции фототаксиса у  сумеречно-ночных видов насекомых 
в сторону ее либо усиления, либо ослабления будет, очевидно, в первую очередь зависеть 
от частоты мерцания света. Соответственно, если в ответ на высокочастотное мерцание 
мы видим усиление положительной реакции фототаксиса у ночных насекомых, то при 
мерцании света с низкой частотой (100 или 120 Гц), возникающей в результате питания 
электросетей переменным током с частотой 50 Гц в Европе или 60 Гц в США, реакция 
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фототаксиса у тех или иных видов насекомых, по всей вероятности, уже окажется нега-
тивной (Inger et al., 2014). Иными словами, представленные в статье результаты не толь-
ко полезны для решения задач прикладного характера, но и вносят вклад в развитие 
представлений о психофизике зрения насекомых, поскольку временные аспекты обра-
ботки зрительной информации у них до сих пор изучены крайне слабо (Donner, 2021).
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HIGH-FREQUENCY PULSED POWER SUPPLY OF LEDS AS A WAY  
TO INCREASE COLLECTIONS OF NIGHT-FLYING INSECTS WITH LIGHT 

TRAPS USING DIAMONDBACK MOTH, PLUTELLA XYLOSTELLA (L.)  
(LEPIDOPTERA, PLUTELLIDAE) AS AN EXAMPLE

Yu. A. Zakharova, A. A. Miltsen, A. N. Frolov

Key words: light, flicker, phototaxis, twilight, white nights, trapping.

S U M M A R Y

Traps equipped with low-power LEDs are very promising for use in insect pest control due to their 
safety for the non-target entomofauna. However, the level of natural illumination at night at high  
latitudes varies greatly and the attractiveness of low-power LEDs in early summer (i. e. during the peri-
od of white nights) becomes too weak to ensure acceptable catch of harmful insects in traps. The pur-
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pose of this article is to illustrate a successful attempt, using the example of the diamondback moth, 
Plutella xylostella (L.), to enhance the attractive effect of low-power LEDs by replacing their direct 
current supply with a high-frequency pulsed (30 kHz) power supply. Diamondback moth adults were 
collected in the vicinity of St. Petersburg in 2020–2024 using Delta plastic traps equipped with LEDs 
and a synthetic sex attractant as a control. The results obtained proved that upgrade of LEDs power 
supply provides significant increase in diamondback moth adult catch by light traps, exactly 4.57 times 
during the period of white nights, 3.11 times during the dark nights following them, and 4.45 times 
during the summer as a whole. The results achieved are important not only from a practical point of 
view, but also have theoretical value, since the effect of flickering light on insect behaviour has been 
very insufficiently studied.


